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Abstract
1.	 Museum specimens are the main source of information on organisms' morphological  

features. Although access to this information was commonly limited to researchers 
able to visit collections, it is now becoming freely available thanks to the digitiza-
tion of museum specimens. With these images, we will be able to collectively build 
large-scale morphological datasets, but these will only be useful if the limits to 
this approach are well-known. To establish these limits, we used two-dimensional 
images of plant specimens to test the precision and accuracy of image-based data 
and analyses.

2.	 To test measurement precision and accuracy, we compared leaf measurements 
taken from specimens and images of the same specimens. Then, we used legacy 
morphometric datasets to establish differences in the quality of datasets and mul-
tivariate analyses between specimens and images. To do so, we compared the 
multivariate space based on original legacy data to spaces built with datasets sim-
ulating image-based data.

3.	 We found that trait measurements made from images are as precise as those ob-
tained directly from specimens, but as traits diminish in size, the accuracy drops 
as well. This decrease in accuracy, however, has a very low impact on dataset 
and analysis quality. The main problem with image-based datasets comes from 
missing observations due to image resolution or organ overlapping. Missing data 
lowers the accuracy of datasets and multivariate analyses. Although the effect is 
not strong, this decrease in accuracy suggests caution is needed when designing 
morphological research that will rely on digitized specimens.

4.	 As highlighted by images of plant specimens, 2D images are reliable measure-
ment sources, even though resolution issues lower accuracy for small traits. At 
the same time, the impossibility of observing particular traits affects the quality of 
image-based datasets and, thus, of derived analyses. Despite these issues, gather-
ing phenotypic data from two-dimensional images is valid and may support large-
scale studies on the morphology and evolution of a wide diversity of organisms.
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1  | INTRODUC TION

Specimens held in natural history collections are our primary source 
of information on the diversity, morphological variety, and spatial and 
temporal distribution of living creatures. Based on this information, we 
obtain knowledge on many areas, such as environmental changes, pub-
lic health and evolution (Babin-Fenske, Anand, & Alarie, 2008; Davis, 
Willis, Connolly, Kelly, & Ellison, 2015; Law & Salick, 2005; Suarez & 
Tsutsui, 2004). Until recently, however, only people with access to mu-
seum collections could study these specimens. Now, almost all institu-
tions are making their specimens more accessible through digitization.

Digitization methods vary as much as the biodiversity included 
in museums. Zoological collections may require the use of complex 
methods that better capture animal form, such as computer tomog-
raphy, magnetic resonance imaging or photogrammetry (e.g. Berquist 
et al., 2012; Falkingham, 2012; Keklikoglou et al., 2019). 2D imaging 
(photographs or flat scans), which has also been used for animals (e.g. 
Mantle, La Salle, & Fisher, 2012; Schmidt, Balke, & Lafogler, 2012), is 
particularly useful for flat specimens. Indeed, the flat, regular in size 
and easy to image nature of plant samples has led to millions of plant 
specimens being available online (Le Bras et al., 2017; Soltis, 2017), 
and ready to be used as part of scientific research.

Taxonomy is one area in which digitization has been very fruitful. 
For example, automatic species identification software can substan-
tially speed up taxonomy and specimen curation (Carranza-Rojas, 
Goeau, Bonnet, Mata-Montero, & Joly,  2017; Remagnino, Mayo, 
Wilkin, Cope, & Kirkup, 2016; Wang, Ji, Liang, & Yuan, 2012). These 
tools, however, usually classify specimens by their overall image pat-
terns, without making assumptions about organ identity (Favret & 
Sieracki, 2016; Remagnino et al., 2016; Wang, Ji, et al., 2012). Trait 
delimitation with images and derived data extraction (Corney, Clark, 
Tang, & Wilkin, 2012; Corney, Tang, Clark, Hu, & Jin, 2012; Gehan 
et al., 2017; Martineau et al., 2017; Wang, Lin, Ji, & Liang, 2012), al-
though promising, is still complex and underdeveloped. Even if we 
still have to wait for automatic data extraction to become highly ef-
ficient, imaging specimens facilitates data acquisition by researchers 
themselves, particularly if used in collective efforts to build compre-
hensive morphological datasets (e.g. O'Leary et al., 2013).

Such phenotypically diverse datasets may support advances in 
comparative and evolutionary biology (Laing et al., 2018). However, in 
comparison to genomic data, they take more time and money to pro-
duce (Burleigh et al., 2013). Tools that use specimens images are one 
option to overcome these challenges (Burleigh et al., 2013). However, 
this approach has limits. First, image resolution may limit observa-
tions, especially of small traits. Second, the nature of organisms them-
selves, or of specimen preparation, hides some features. For example, 
stamens in beans flowers are naturally hidden by the petals, and the 
wings of pinned butterfly specimens usually cover their legs. Although 
this is not a problem when one has access to specimens, it may be-
come an issue for images. Thus, such variations in the preparation and 
nature of specimens may impact image-based data collection.

To evaluate the influence of these restrictions on the acquisition 
of morphological data from digitized specimens, we asked (a) if image 

measurements significantly differ from specimen measurements and 
(b) if image-based datasets differ from the ones built with specimens 
to the point of affecting morphological analyses. To answer our first 
question, we compared measurements taken from herbarium speci-
mens and their two-dimensional digital image. To answer our second 
question, we compared the results of multivariate analyses of plant 
specimens with analyses simulating image usage.

2  | MATERIAL S AND METHODS

2.1 | A word on terminology

Before outlining our analyses, we explain some of the terms we 
use, in particular accuracy and precision (for details, see Streiner 
& Norman,  2006). We consider precision to be an estimate of the 
variation between multiple measurements of the same feature. If val-
ues for these measurements do not differ widely, precision is high. 
Accuracy is treated as the difference between a measurement and a 
reference value and also applied here to judge the results of multivar-
iate analyses. A close similarity between the measurement (or results) 
and the reference value indicates high accuracy. Because our goal is 
to evaluate the confidence of images as a data source in comparison 
to that obtained from specimens, we treated specimen data as the 
reference values against which we judged the accuracy of image data.

2.2 | Measurement precision and accuracy

To test if measurements made from images and specimens differ, we 
measured different leaf parts of specimens belonging to five species 
(hereafter, measurement dataset). These species (Inga vera Willd., 
Ocotea divaricata Mez, Piper anisum (Spreng.) Angely, Smilax flumin-
ensis Steud. and Sphagneticola trilobata (L.) Pruski) were selected to 
encompass different leaf morphologies, such as simple, compound 
and lobed leaves with different base and apex shapes. Besides, 
using these taxa, we avoided sampling size issues, as they are well 
represented in the Rio de Janeiro Botanical Garden herbarium (RB; 
acronym according to Thiers (2020, continuously updated). See the 
Supporting Information for information on measurements, sampling 
and vouchers. Metric data are also available from MorphoBank 
(project 3764; http://morph​obank.org/perma​link/?P3764). We used 
a digital caliper to measure specimens and the FSI Viewer v. 5.6.6 
software (available from RB's online collection; http://rb.jbrj.gov.br) 
to measure images of the same leaves from the same specimens. All 
measurements, both from images and specimens, were made twice 
to allow the following analyses.

First, we tested the precision of measurements made either 
from the specimens or from the images. To do so, we evaluated 
how the two repeated measurements are close to each other with 
the intraclass correlation coefficient (ICC; Bartko, 1966). Then, we 
tested the hypothesis that images and specimens have the same 
average precision. For that, we compared the difference between 

http://morphobank.org/permalink/?P3764
http://rb.jbrj.gov.br
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the two repeated measurements made from images with those 
made from specimens with a paired t test. The last test in this con-
text evaluated if precision varies according to measurement scale. 
For that, we first divided the absolute difference between the two 
repeated measurements by their average to obtain measurements 
relative precision. Then, we plotted the relative precision of each 
observation against a scale reflecting overall trait size.

Having tested for precision, we computed the average of the two 
measurements of each variable. We used these averages to avoid bias 
in the following accuracy analyses. For each specimen and variable, we 
evaluated accuracy between measurements in the images to the spec-
imens by testing their similarity with ICC (Bartko, 1966). We further 
evaluated accuracy testing the hypothesis that the median difference 
between image and specimen measurements is zero with a Wilcoxon 
signed-rank two-sample test (Wilcoxon, 1945). Finally, to quantify the 
relationship between measurement error and the magnitude of each 
variable, we plotted the relative error of the measurements (i.e. the 
absolute difference between image and specimen values divided by 
image mensuration) against the image measurement itself.

2.3 | Accuracy of image-based datasets

To test if image-based data impacts analyses of morphological data,  
we compiled datasets of morphometric studies of different 
plant groups (Alcantara, de Oliveira, & Lohmann,  2013; Ames, 
Salas, & Spooner, 2008; Andres-Sanchez, Rico, Herrero, Santos-
Vicente, & MartINez-Ortega, 2009; Bello, Stirton, Chimphango, & 
Muasya,  2018; Bünger, Einsehlor, Figueiredo, & Stehmann, 2015; 
Egan,  2015; Kučera, Lihova, & Marhold, 2006; Marhold,  1992; 
Poulsen & Nordal,  2005; Rose & Freudenstein,  2014; Slovák, 
Kučera, Marhold, & Zozomová-Lihová, 2012; Trovó, Sano, & 
Winkworth,  2008). These datasets (hereafter original datasets) 
were used to generate three synthetic datasets, which were modi-
fied to include variation as if they had been compiled from images: 
the first included bias observed in the measurement accuracy analy-
sis described above; the second included missing data; and the third 
included both measurement bias and missing data. We generated 
synthetic datasets with the following procedures.

First, we added noise to the original dataset using a zero-mean 
Gaussian distribution with varying values of variance. To do so, we 
modelled how the standard deviation of the measurements' error 
varies as a function of each variable's magnitude (See Supporting 
Information). We then used this model to simulate different values 
of standard deviations for the Gaussian distribution of each variable, 
as to reproduce the same level of measurement error expected for 
that variable.

Second, to simulate missing observations, we first checked 
which variables could be obtained from images on a set of up to 
10 digitized specimens from the same taxa of each morphometric 
study (see Supporting Information for information on variables and 
vouchers). Using this information, we modelled patterns of missing 
data, which we used to mask observations in the original dataset, 

producing synthetic data including missing observations (Figure 1). 
Finally, we combined the approaches just described to simulate the 
presence of both noise and missing data.

With original and synthetic datasets at hand, we compared 
agreement between results of principal component analyses (PCA) 
of all of them. Besides being one of the most common methods in 
morphometric analyses, differences in PCA results summarize the 
overall variation of datasets being compared. Thus, PCA comparison 
captures differences between data acquisition methods (images vs. 
specimens).

Our protocol first used pcaMethods (Stacklies, Redestig, Scholz, 
Walther, & Selbig, 2007) to run a Probabilistic PCA (Roweis, 1998) 
for each dataset, which automatically handles missing data with an 
expectation-maximization algorithm. We then measured the agree-
ment between the first four principal components (PC) inferred 
for original and synthetic data by computing Pearson's correlation 
coefficient (Pearson, 1920) between the scores obtained for each 
observation. High correlation indicates agreement between analy-
ses, and consequently between acquisition methods. However, as 
PC correlations may not capture overall dataset variation (Melo, 
Garcia, Hubbe, Assis, & Marroig, 2015; Yang & Shahabi, 2004), we 
also used EvolQG (Melo et al., 2015) to measure PCA similarity (Yang 
& Shahabi, 2004) between original and synthetic data. PCA similar-
ity weights PC correlation by their eigenvalues (Melo et al., 2015; 
Yang & Shahabi, 2004), and, thus, takes into account how much data 
variability is expressed in each PC.

The process described above was repeated 100 times (i.e. 100 
synthetic datasets were created), so we could evaluate the accuracy 
of image-based analyses to specimen-based PCAs with mean values 
and 95% confidence intervals.

3  | RESULTS

Measurements taken both from images and specimens have high in-
ternal precision, as seen in intraclass correlation coefficient (ICC) val-
ues of 1 for all variables. Moreover, the hypothesis that precision is the 

F I G U R E  1   Illustration of the masking procedure. Left: original 
dataset. Centre: missing patterns obtained using digitized 
specimens; blank spaces indicate missing information and  
check-marks indicate available variables. Right: masked data used 
for constructing the , obtained by applying a randomly chosen 
missing pattern (from the middle table) to each row of the original 
dataset
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F I G U R E  2   Relationship between 
the relative precision of measurements 
(i.e. the absolute difference between two 
repeated measurements divided by their 
average) and magnitude of each variable. 
Dots are different variable observations 
from the measurement dataset, either 
made on images (red) or on specimens 
(blue). The curves indicate the mean trend, 
along with their standard errors. Y-axis 
displayed in square root scale
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F I G U R E  3   Scatter plots with 
measurements made from specimen 
versus measurements made from the 
images on the measurement dataset. 
Blue lines indicate the line y = x, in which 
both measurements are the same. Each 
panel also shows intraclass correlation 
coefficient (ICC) values for each variable
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same between images and specimens was not rejected (p = 0.678). 
Indeed, Figure  2 indicates that measurements made on images and 
specimens have similar precision, and that, independently of the 
source, the precision decreases together with trait size.

Similarly, high ICC values indicate that measurements taken from 
images are accurate overall (Figure 3). This lack of bias is reinforced 
by non-rejection of the hypothesis that they would not differ from 
specimens measurements (Figure  4). At the same time, although 
measurements of larger traits are quite similar between specimens 
and images, measuring smaller organs with images is not as accurate. 
For example, blade length measurements of O. divaricata or P. ani-
sum, which vary between 50 and 160 mm, are extremely similar be-
tween specimens and images, as shown by the almost perfect fit of 

points to the identity line (curve y = x) in Figure 3. On the other hand, 
points comparing petiole length measurements of the same species 
(2–15  mm long) are more dispersed around the identity line. This 
effect is clearly seen in the plot between relative error and speci-
men measurement values (Figure 5), which shows that differences 
between image and specimen measurements are higher for smaller 
traits (below 30–40 mm).

All but two synthetic datasets (E2015, T2008) include missing 
data. The total proportion of missing observations, percentage 
of variables with at least 50% of observations and variables that 
were impossible to observe from images (Table 1) vary between 
synthetic datasets, but at least one of these classes lacks more 
than 25% of observations for most datasets. Synthetic datasets 

F I G U R E  4   Histogram of the difference between measurements made in the specimens and images on the . Vertical lines indicate the 
line x = 0, in which the difference between the measurements is zero. Each panel also shows the p values for testing the hypothesis that the 
median difference between image and specimen measurements is zero
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also differ in proportions of missing data by type of variable (con-
tinuous, categorical, discrete or ratio; Table  2), with continuous 
variables being more commonly absent. Even though patterns 
of missing data may differ between datasets, correlation coef-
ficients indicate that drops in accuracy are more related to ab-
sences spread in the dataset than to complete lack of a particular 
variable (Table 3).

The analyses of original and synthetic datasets (Figure  6) 
show that the results of principal component analyses based on 
images are affected by noise and missing data. Nonetheless, noise 
effect is almost non-existent, as shown by values near 100% for 
both PCA similarity and PC correlation for the first and second 
principal components. On the other hand, accuracy drops in face 
of missing data, and particularly due to the joint effect of noise 
and missing data.

F I G U R E  5   Relationship between  
the relative error of the measurements 
(i.e. the absolute difference between 
image and specimen measurements 
divided by specimen measurement) and 
the magnitude of each variable. Each dot 
represents a different observation from 
a variable in the measurement dataset. 
The curve indicates the mean trend, along 
with its standard error. Y-axis is displayed 
in a square root scale
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TA B L E  1   Proportion of missing data in each dataset according to 
three criteria: total percentage of missing data (total); percentage of 
variables with at least 50% of missing observations (at least 50%); 
percentage of variables impossible to score from images (100%)

Dataset Total % At least 50% 100%

A2013 50% 56.25% 0%

A2008 44.39% 45.12% 19.51%

A2009 69.17% 100% 8.33%

B2018 37.5% 35.71% 35.71%

B2015 19.44% 8.33% 0%

E2015 0% 0% 0%

K2006i 30.72% 41.18% 5.88%

K2006p 30.72% 41.18% 5.88%

M1992 10% 10% 10%

P2005 42.97% 43.75% 12.5%

R2014 60.61% 63.64% 45.45%

S2012 43.56% 44% 24%

T2008 0% 0% 0%

TA B L E  2   Percentage of missing data by type of variable  
for each dataset used to build the masks with missing data  
pattern

Dataset
Continuous 
(mm) Categorical Discrete Ratio

A2013 50% — — —

A2008 39.39% 53.33% 52.73% 37.65%

A2009 70% — 60% —

B2018 50% 16.67% 0% —

B2015 19.44% — — —

E2015 0% — — —

K2006i 46.67% — 13.89% 0%

K2006p 46.67% — 13.89% 0%

M1992 20% 0% 0% —

P2005 32.81% 56.25% 43.75% —

R2014 51.04% — 58.33% 100%

S2012 41.11% 56.94% 31.75% —

T2008 0% — 0% —

TA B L E  3   Spearman correlation coefficients and their 
respective p values for comparing the relationship between the 
accuracy in the estimation of each principal component/the 
PCA similarity (without variables that cannot be acquired from 
images) and the percentage of missing observations. Total%, 
total percentage of missing data in the dataset; at least 50%, 
variables with at least 50% of missing observations; 100%, 
variables impossible to score from images

PCA 
component Total % At least 50% 100%

1 −0.45 (0.12) −0.48 (0.10) −0.15 (0.63)

2 −0.78 (<0.01) −0.79 (<0.01) −0.51 (0.08)

3 −0.65 (0.02) −0.66 (0.01) −0.41 (0.16)

4 −0.67 (0.01) −0.68 (0.01) −0.30 (0.32)

PCA Sim −0.73 (<0.01) −0.73 (<0.01) −0.78 (<0.01)
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4  | DISCUSSION

Here we used a set of leaf measurements and legacy morphomet-
ric studies to evaluate the precision and accuracy of morphological 
data gathered from images of herbarium specimens. We found image 
measurements to be highly precise and accurate, even though there is 
a small drop in accuracy for smaller traits. On the other hand, missing 
observations may decrease the accuracy of image-based morphologi-
cal datasets. Below, we discuss the problems, advantages and conse-
quences of collecting morphological data from digitized specimens.

4.1 | Measurement precision and accuracy

Measurements taken from digitized herbarium specimens are as pre-
cise as the ones made on actual specimens. In fact, image measure-
ments are in the confidence limits of being more precise (Figure 2). 
An increase in precision has been seen for other imaging systems, 
as micro-computed tomography (Simon & Marroig, 2015). Thus, as 
we have focused only on leaves of particular species, it is possible, 
analyses including a wider diversity of morphological variables, to 
find the same for images of herbarium specimens.

F I G U R E  6   (Left) Accuracy (and 95% 
confidence intervals) in estimating the 
first four principal components using 
images (synthetic datasets). (Right) PCA 
similarity between  versus original. 100% 
values equal maximum accuracy for both 
analyses. N,  with noise on the same level 
as those observed in Figure 3; M,  without 
variables that cannot be acquired from 
images; NM,  with both noise and missing 
data
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Image measurements are also accurate, as indicated by their high 
similarity to specimen measurements (Figure 3) and overall lack of bias 
(Figure 4). Agreement between data gathered from images and speci-
mens was also seen for the extraction of morphological features using 
artificial intelligence, which compared measurements taken by comput-
ers and researchers (Corney, Clark, et al., 2012). Similar results for dif-
ferent organisms and imaging methods (Aldridge, Boyadjiev, Capone, 
DeLeon, & Richtsmeier, 2005; Simon & Marroig, 2015) reinforce that 
high-confidence measurements can be obtained from digitized spec-
imens. Nonetheless, we have also evidenced particular issues in the 
accuracy of image-based measurements and overall data acquisition.

4.2 | Noise

The first problem with image use is a drop in measurement accu-
racy as variables scale down (Figure  4). Measurements of smaller 
features, particularly those below 30–40 mm (Figure 5), differ more 
between images and specimens than do larger structures. This as-
sociation between accuracy error and scale was to be expected, as 
measurement precision lowers for smaller traits (Figure  2). Such a 
bias in precision is not limited to images and is seen in our speci-
men measurements (Figure 2), as well as for bird bones (Yezerinac, 
Lougheed, & Handford,  1992) and Drosera (Droseraceae) leaves 
(Hoyo & Tsuyuzaki, 2013), for example. In this context, our results do 
not mean images are worse measurement sources. However, while 
we can increase precision and accuracy by studying specimens with 
different magnification tools, zooming images is restricted by resolu-
tion. Image resolution may not be a problem for high-quality images 
(e.g. JStor Global Plants; https://plants.jstor.org/), but as digitiza-
tion methods vary (Sweeney et al., 2018; Takano et al., 2019; Tulig, 
Tarnowsky, Bevans, Kirchgessner, & Thiers,  2012), databases will 
differ in how they are prone to measurement errors.

Even though measurement errors will always be present, their 
effect is not strong. Our results show that datasets compiled from 
images and specimens are essentially the same (Figure  6), espe-
cially as indicated by high PCA similarity (Melo et al., 2015; Yang & 
Shahabi, 2004). It is possible our results are biased, as most variables 
in our legacy datasets fall outside the range of sizes we found to be 
problematic for plant specimens (below 30–40 mm). Thus, research-
ers working on smaller organs or with small organisms should bear 
this potential bias in mind. Nonetheless, as seen for other taxa and 
methods using image-based measurements (e.g. Bruner, Costantini, 
Fanfani, & Dell'Omo, 2005; Chang & Alfaro,  2016; Corney, Clark, 
et al., 2012; Corney, Tang, et al., 2012), specimens two-dimensional 
images are good sources of metric data. Of course, this will only hold 
for traits that can be observed in the images.

4.3 | Missing data

Another problem in our synthetic databases was the pervasive 
presence of missing data (Table  1), particularly of continuous 

variables (Table 2). As discussed above, these absences are likely 
due to image resolution issues, which hamper the observation of 
small features. Nonetheless, the extent of this problem is particular 
to each dataset. For example, the only two datasets with no missing 
data (T2008 and E2015; 1) also include variables that are smaller 
than 30 mm. At the same time, larger organs that were concealed 
during specimen preparation or due to their overlapping nature 
(e.g. petals usually hide both androecium and gynoecium) cannot 
be observed and, thus, bias data collection. Feature-related bias 
is also seen in automatic trait recognition in which organ identity 
affects accuracy (Younis et al., 2018). Similar examples come from 
our datasets. If Trovó et al. (2008) had investigated the morphology 
of flowers (usually smaller than 2  mm in Eriocaulaceae), it would 
not be possible to reproduce their data solely with images. This is 
the case with the T2013 dataset (Alcantara et al., 2013), in which 
the main source of missing data are organs concealed within the 
Bignoniaceae tubular flowers. Even though we can manipulate 
specimens to expose such hidden features, the same cannot be 
done with images.

Indeed, missing data lower PC correlation and PCA similarity 
(Figure 6). This trend is reinforced by the negative correlation be-
tween the proportion of missing data in synthetic dataset and PCA 
similarity or PC estimation (Table 3). Accuracy drops are stronger 
for the second, and especially for the third and fourth PCs. Although 
poor estimation of third and fourth PCs may not be a big problem, 
inaccuracy in estimation of the first two components and overall 
multivariate space, expressed in PCA similarity, points to significant 
differences between original and synthetic datasets. These differ-
ences could bias biological interpretations (Yezerinac et al., 1992) 
of studies relying on acquisition of morphological data, such as 
phenotypic evolution, disparity, modularity, phylogenetic infer-
ence and others (e.g. Castiglione et al., 2019; Catalano, Goloboff, & 
Giannini, 2010; Dellinger et al., 2019; Gallaher et al., 2019; Guillerme 
& Cooper,  2018; Klingenberg & Gidaszewski,  2010; Vasconcelos 
et al., 2018; Wiens, 2003; Zaragüeta-Bagils & Bourdon, 2007).

4.4 | Joint effect of measurement noise and missing  
data

Above, we analysed the individual effects of measurement noise 
and missing data over dataset accuracy. However, most real data-
sets likely will include both issues. Our results indicate they interact, 
further dropping PC correlation and PCA similarity (Figure  6). For 
a few cases in which noise is stronger than missing data (e.g. third 
and/or fourth PCs in B2018, and M1991), the joint effect improves 
component estimation, likely by removing noisy variables. Apart 
from those exceptions, the drop in accuracy when both noise and 
missing data are present may affect biological interpretations (see 
above). Particularly, rates of false-positive and false-negative con-
clusions may increase for study systems with low internal variation, 
which is common in comparisons of closely related taxa (Yezerinac 
et al., 1992).

https://plants.jstor.org/
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Although the joint effect of noise and missing data may be se-
rious, its influence will vary as datasets differ in the amount of 
missing data and presence of noise, which are linked to traits of 
interest size, image resolution and organ overlap. Hence, before 
relying solely on morphological data compiled from digitized spec-
imens, researchers should first test how image use affects their 
particular studies. For some cases, the overall accuracy we found 
in our analyses would be problematic (Figure 6). For others, this 
accuracy would be just fine.

4.5 | Consequences for image-based morphological  
data

When compiling morphological data from specimen images, meas-
urement noise is not a problem, particularly if variables are outside 
the size range affected by resolution. Hence, even though resolution 
may vary among digitization methods (Sweeney et al., 2018; Takano 
et al., 2019; Tulig et al., 2012), measuring them instead of specimens is 
an effective, less expensive (no need for traveling or loans), and, more 
important, reliable method for data acquisition.

On the other hand, missing data have a higher impact on data 
collection. This impact, however, will vary between different 
groups, particular morphologies and specific research questions. 
For the cases in which missing data are relevant, researchers can 
improve data quality with particular strategies, used individually 
or in combination: (a) complete data with imputation methods;  
(b) exclude problematic variables or observations and (c) use spec-
imens to fill gaps.

Data imputation methods estimate missing values in a dataset 
based on a variable's internal variance, or on its associations to 
other variables in the dataset (Frane,  1976; Little & Rubin,  2019; 
Rubin, 1976). Here, for example, our PCA analyses used a relatively 
simple imputation method (Roweis, 1998) algorithms. Although not 
free of issues (Little & Rubin,  2019), data estimation methods are 
powerful tools to improve results without compromising biological 
meaning (König et al., 2019).

Data imputation, however, will be inaccurate in cases where al-
most all observations of a given variable are missing. In this situation, 
it is sometimes better to exclude the variable from the analysis, par-
ticularly if it is highly correlated to other variables (Hemel, van der 
Voet, van der Hindriks, & Slik, 1987). This way, variable exclusion is 
less likely to impact analyses or at least will have lower impact, as seen 
for the smaller negative correlation of fully absent variables to PC es-
timation and PCA similarity (Table 3). On the other hand, depending 
on the reason why a feature is missing, variable exclusion may bias 
results (Little & Rubin, 2019). Thus, it is important to understand the 
performance of data imputation and data exclusion when dealing with 
missing observations (Enders, 2008; Horton & Kleinman, 2007; Musil, 
Warner, Yobas, & Jones, 2002; Saunders et al., 2006).

If variable exclusion and data imputation are not feasible for a 
given case, such as a complete lack of observations on an important 
variable, researchers can use specimens to fill gaps in the dataset. 

Although not as practical as the other options, this approach can at 
least speed up work inside museums. When access to collections is 
limited, it is possible to combine examination of a minimum number of 
specimens and data imputation. These options exemplify how there is 
no single solution to circumvent missing data issues.

A more powerful approach to limit missing data—and further 
lower measurement noise—is to expand digital collections to 
include images with different magnifications, images exposing 
structures commonly hidden or images taken from multiple angles. 
Increasing magnification and exposing hidden traits are complex 
and time-consuming but could be achieved if researchers fed back 
to institutions the images obtained while studying the specimens. 
Multi-camera imaging is particularly helpful for zoological specimens 
(Hereld & Ferrier, 2019; Hereld, Ferrier, Agarwal, & Sierwald, 2017; 
Price et al., 2018; Ströbel, Schmelzle, Blüthgen, & Heethoff,  2018; 
Tegelberg, Mononen, & Saarenmaa, 2014), as it allows proper visu-
alization of traits that are hidden or distorted on images in a single 
view. Combining multi-view imaging and production lines (Tegelberg 
et al., 2014) is one efficient option to generate imagery that supports 
both 3D reconstructions (Hereld & Ferrier, 2019; Hereld et al., 2017; 
Ströbel et al., 2018) and accurate morphological data acquisition from 
the original two-dimensional images themselves, as shown here.

Despite particularities discussed above, digitization opened new 
frontiers for image-based phenotyping. Up to now, the bulk of re-
search using specimen images focused on species identification 
(e.g. Carranza-Rojas et al., 2017; Cope, Corney, Clark, Remagnino, & 
Wilkin, 2012; MacLeod, 2007; MacLeod & Steart, 2015; Remagnino 
et al., 2016; Unger, Merhof, & Renner, 2016; Wang, Ji, et al., 2012; 
Wang, Lin, et al., 2012), or on shape analysis of particular organs (e.g. 
Corney, Clark, et al., 2012; Reginato & Michelangeli, 2016; Smith & 
Kriebel, 2018). For studies focused on individual organs, datasets usu-
ally included only images of the focal traits. Now, the millions of images 
of herbarium specimens available make a wider diversity of pheno-
types freely accessible, an accomplishment soon to be followed by zo-
ological collections. In turn, easy access to specimen images supports 
data collection with crowdsourcing, a relatively fast and cheap way to 
obtain high-quality data (Chang & Alfaro, 2016; O'Leary et al., 2018; 
Zhou et al., 2018). Moreover, crowdsourced datasets may also aid the 
improvement of automatic extraction methods (Burleigh et al., 2013; 
Zhou et al., 2018), or be used in parallel with them to improve data 
collection. For example, while machines still cannot differentiate over-
lapped plant organs (Gehan & Kellogg, 2017), an automatic approach 
can be complemented by human input, as we can easily identify and 
overcome overlapping issues. Independently of particular data collec-
tion strategies and of the need to be careful with missing observations, 
we reinforced here that digitized specimens are good sources of mor-
phological data.

4.6 | A note on data sharing

One of the main advantages of collecting data from digitized speci-
mens is their free availability in digital repositories. It is only fair that 
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sharing extends to data as well. However, at least for plant morpho-
metric studies, this is not frequently done. For example, our original 
dataset came from just a few authors, who shared raw observations 
at publication time or kindly replied to our data requests. A much 
larger number of studies, however, presented only tables with mean 
and standard deviation values, which do not allow data reuse or 
verification.

If we aim to build comprehensive datasets, we have to shift this 
trend and increase the use of tools such as MorphoBank (https://
morph​obank.org; O'Leary & Kaufman, 2011) to share morphological 
data. Data sharing improves scientific work, and reduces redundant 
data collection, particularly if data are strongly integrated with on-
tologies (Deans et  al.,  2015) and linked to vouchers and scientific 
names in curated databases (Bruneau et al., 2019).

5  | CONCLUSIONS

Measuring digitized specimens is a reliable data collection method, 
as demonstrated by a high correlation between measurement from 
specimens and images, even though resolution introduces meas-
urement errors on small scales. At the same time, as it is impossible 
to manipulate images, particular features cannot be observed and 
will be missing from image-based datasets. Even though there are 
some options to reduce the effects of missing data on analyses, 
the impact of this more serious problem has to be evaluated for 
each case.

Overall, we showed that accurate morphological data can be 
sourced from two-dimensional specimen images. For now, the mil-
lions of digital specimens (plus data on their distribution, ecology 
and phenology) already available for plants (Le Bras et  al.,  2017; 
Soltis, 2017; Willis et al., 2017) put Botany at the front line of collec-
tive morphological data acquisition. As digitization expands to other 
groups, we will be able to merge big data on geographical distribu-
tion, genomes and morphology to unveil new knowledge on patterns 
and processes of phenotypic diversity and evolution.
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