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Discovery of a Novel Lineage Burkholderia cepacia ST 1870
Endophytically Isolated from Medicinal Polygala paniculata
Which Shows Potent In Vitro Antileishmanial and
Antimicrobial Effects
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In this study, we report the isolation and identification of an endophytic strain of Burkholderia cepacia (COPS strain) associated
with Polygala paniculata roots. Polygala plants are rich sources of promising microbiomes, of which the literature reports several
pharmacological effects, such as trypanocidal, antinociceptive, anesthetic, anxiolytics, and anticonvulsant activities. B. cepacia
COPS belongs to a new sequence type (ST 1870) and harbors a genome estimated in 8.3Mbp which exhibits the aminoglycosides
and beta-lactams resistance genes aph(3′)-IIa and blaTEM-116, respectively. Analysis performed using MLST, average nucleotide
identity, and digital DNA-DNA hybridization support its species-level identification and reveals its novel housekeeping genes
alleles gyrB, lepA, and phaC.+e root endophyte B. cepacia COPS drew our attention from a group of 14 bacterial isolates during
the primary screening for being potentially active against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212,
Micrococcus luteus ATCC 9341, Escherichia coli ATCC 25922, and Candida albicans ATCC 10231 and exhibited the broad-
spectrum activity against phytopathogenic fungi. In addition, COPS strain showed production of protease, lipase, and esterase in
solid media, and its natural product extract showed potent inhibition against fungal plant pathogens, such as Moniliophthora
perniciosa, whose antagonism index (89.32%) exceeded the positive control (74.17%), whereas Sclerotinia sclerotiorum and
Ceratocystis paradoxa showed high percentages of inhibition (85.53% and 82.69%, respectively). COPS crude extract also
significantly inhibited S. epidermidisATCC 35984, E. faecium ATCC 700221 (MIC values of 32 μg/mL for both), E. faecalis ATCC
29212 (64 μg/mL), and S. aureus ATCC 25923 (128 μg/mL). We observed moderate antagonistic activity against A. baumannii
ATCC 19606 and E. coli ATCC 25922 (both at 512 μg/mL), as well as potent cytotoxic effects on Leishmania infantum and
Leishmania major promastigote forms with 78.25% and 57.30% inhibition. In conclusion, this study presents for the first time the
isolation of an endophytic B. cepacia strain associated with P. paniculata and enough evidence that these plants may be considered
a rich source of microbes for the fight against neglected diseases.
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1. Introduction

Plant tissues represent a significant source of natural sub-
stances for pharmaceutical and biotechnological interest.
Drug discovery has been based on medicinal plants for
centuries [1–3]. However, endophytes are capable to bio-
synthesize a plethora of natural products and compounds
which are originally believed to be produced only by their
host plants [4, 5], and therefore, they are considered al-
ternative suppliers of characteristic phytochemical com-
pounds and represent a vast unexplored reservoir of unique
chemical structures [6]. +ese plant-symbiont microor-
ganisms that live in intimate interaction establish a mutu-
alistic interaction with the host plant by exchanging
nutrients and protection; they produce antibiotics and other
substances that can protect the plant against stress condi-
tions such as attack by herbivores, pests, and plant pathogens
without causing apparent disease symptoms [7–9].

Polygala paniculata (commonly known as “mimosa,”
“barba-de-bode,” “barba-de-São-João,” and “vassourinha
branca”) is a medicinal plant that frequently grows on the
Brazilian coast and is used in traditional medicine due to
their analgesic properties and treatment of inflammatory
diseases such as asthma, bronchitis, arthritis, and disorders
of the kidney [10–12]. However, plants within this genus are
well-known producers of a variety of phytochemical com-
pounds [13], such as methyl salicylate, alkaloids [14], xan-
thones [15, 16], saponins [17, 18], coumarins [11, 19], and
styrylpyrones [11]. Natural products extracted from Polygala
species are widely studied [13], and numerous reports de-
scribe pharmacological effects for their crude extracts such
as anti-inflammatory [20, 21], anxiolytic [22], antidepressant
[11], trypanocidal [23], antinociceptive [24], neuro-
protective [25, 26], antiatherosclerosis [27], antitumor
[28, 29], and antifungal [30]. However, the potential of
endophytes and rhizospheric-associated microorganisms
within these plant genuses remains unknown. Consequently,
the exploitation of medicinal plants’ microbiome, which
produces bioactive metabolites, is fundamental [31, 32].

+e introduction of antibiotics enabled the development
of therapies for previously incurable diseases. However,
resistance to this class of medicines happens faster than the
human capability of discovering new compounds and in-
troducing them into clinical practice. Moreover, synthetic
approaches to antibiotic production have not been effective
enough to completely replace this platform [31, 33, 34].

Likewise, phytopathogenic fungi represent a severe
threat to several crops, thus affecting production and quality.
Modern agriculture is entirely dependent on agrochemicals;
although they can improve crop yield, quality, and shelf-life,
they negatively affect the environment and human health. In
this regard, issues related to sustainability and practices in

defense of the environment have drawn considerable at-
tention [35–37].

Approximately, 13 million people suffer from parasitic
diseases caused by Leishmania protozoa infection. Parasite
resistance and host toxicity of currently available drugs are a
reality and a concern mainly in subtropical countries
[38, 39]. On the other hand, microbial resistance to anti-
biotics has been rapidly spread, is responsible for 33,000
deaths in Europe, and became a concern to public health
[40].

We aimed to explore the endophytes of Polygala pan-
iculata and isolate antibiotic- and biotechnology-related
enzymes-producing microorganisms. Herein, we present the
Burkholderia cepacia COPS, a sequence-type (ST) 1870
strain isolated from P. paniculata roots collected in the
Brazilian Atlantic Forest. In addition to its draft-genome, we
presented the COPS enzymes and antimicrobial activities.

Burkholderia spp. consist of emerging sources of a
plethora and diverse natural products potentially relevant
for therapeutic/medicine, biotechnological, and agriculture
applications [41]. +is genus is a versatile producer of an-
timicrobial compounds and enzymes and exhibits plant
growth-promoting properties. We can find such Gram-
negative bacteria in several habitats, ranging from humans
(as pathogens) to plants (as endophytes) [42–48].

Although widely used for bacterial systematics, the
taxonomic identification by 16S rRNA coding gene among
Burkholderia cepacia complex (Bcc) is limited and difficult
[49–53]. According to Bach et al. [52], the identities of 16S
rRNA and recA genes within Bcc can reach 100% and 95%,
respectively. Several studies report the use of housekeeping
genes established in multilocus sequence typing (MLST) to
differentiate the Bcc species [54–61]. +e multilocus se-
quence analysis (MLSA) of the housekeeping genes atpD,
gltB, gyrB, recA, lepA, phaC, and trpB enable an accurate
investigation of evolutionary characteristics and high res-
olution at the species level [56, 57, 61].

2. Materials and Methods

2.1. Biological Material. Polygala paniculata plants samples
and their rhizospheric soil were collected in Peruı́be, south
coastal municipality of São Paulo State, Brazil (− 24° 19 ′12 ″,
46° 59′ 54″) (SisGen, registration number: AF1A75A), and
vouchers (F.P.N. Cruz 3) were deposited at the Federal
University of Sao Carlos (SPSC) and Botanical Garden of Rio
de Janeiro (RB) herbaria and registered to the Brazilian
Genetic Resources Managing System (SisGen; registration
AF1A75A). Plant’s identity was confirmed as Polygala
paniculata Linnaeus [62], in accordance with Marques and
Gomes [63]. +e bacterial community was isolated after
superficial disinfection of the plant by serial washing in 70%
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ethanol for 2min, NaClO for 3min, 70% ethanol for 1min,
and double rinse with distilled H2O. +e plant structures
were grounded and incubated in phosphate-buffered solu-
tion (PBS) (NaCl, 8.0 g/L; KCl, 0.2 g/L; Na2HPO4, 1.44 g/L;
KH2PO4, 0.24 g/L; pH, 7.4) at 28°C/200 rpm for 2 hours.
Subsequently, 100 μL of 1 :10 serial dilutions were inoculated
on tryptic soy agar (TSA) supplemented with benomyl
(50 μg/mL) and incubated at 28°C until growth [64, 65]. +e
isolation of the rhizospheric community was based on
Andreote et al. [66] with slight modifications. Ten grams of
rhizospheric soil were placed in Erlenmeyer flasks con-
taining 90mL of sterile PBS and incubated under the same
conditions already described. Finally, 100 μL of decimal
dilutions was inoculated in TSA and cultured at 28°C until
bacterial growth.

2.2. Screening of Antimicrobial and Enzymatic Activities.
Fourteen bacterial isolates were randomly selected (four
from rhizosphere and ten endophytes) and qualitatively
tested by the overlay test [44, 67, 68] for the antimicrobial
activity screening. A total of 100 μL of precultured isolates in
International Streptomyces Project medium 2 (ISP2) (malt
extract: 10 g/L; yeast extract: 4 g/L; and glucose: 4 g/L) [69]
was adjusted to OD600 between 0.3 and 0.6 and inoculated in
the center of the Petri dishes containing ISP2 agar and
incubated at 28°C for 72 hours. +en, the isolates were
exposed to chloroform for inactivation, followed by a 30-
minute evaporation step. Subsequently, semisolid brain-
heart infusion agar (BHI), previously inoculated with test
microorganisms (Staphylococcus aureus ATCC 29213,
Escherichia coli ATCC 11775, and Candida albicans ATCC
10231), was poured onto the inactivated isolate.

+e antagonism test for phytopathogenic fungi was
performed as described by Quiroga et al. [70]. +e isolated
strains were streaked in potato dextrose agar (PDA) at the
edges of the plates and incubated at 28°C until their complete
growth. Next, a 0.6 cm plug of the phytopathogenic fungus
mycelium was placed at the top of the plate containing the
grown isolate. +e plates were incubated again at 28°C. As a
negative control, each phytopathogen was cultured in PDA
for indicating the time of the inhibition evaluation [71]. All
tests were performed in triplicates. All pathogenic strains
used in this study are listed in Table 1.

+e assessment of enzymatic potential consisted in a
preculture of Polygala paniculata-derived bacteria in 3mL of
tryptic soy broth (TSB–KASVI) and incubated for 48–72
hours at 28°C. +en, 2 μL of the culture was transferred to a
M9 enzymatical solid medium (200mL/L of stock solution
(64 g/L Na2HPO4.7H2O; 15 g/L KH2PO4; 2.5 g/L NaCl; 5 g/L
NH4Cl)); 2mL/L 1M MgSO4; 10 g/L; 0.1mL/L CaCl2 1M;
15 g/L agar, pH 7.2, with different supplements, depending
on the activity to be studied: (1) 0.5% yeast extract and 1%
soluble starch for amylase activity; (2) 0.5% yeast extract and
1% carboxymethyl cellulose for cellulase activity; (3) 0.5%
yeast extract and 1% pectin, pH 8.0 for pectin-pectate lyase;
and (4) 0.5% yeast extract and 1% pectin, pH 5.0 for pectin-
polygalacturonase. +e lipase/esterase media consisted of
peptone, 10 g/L; NaCl, 5 g/L; CaCl2.H2O, 0.1 g/L; agar, 15 g/

L; pH 7.4, supplemented with 1% (v/v) of Tween 20 and
Tween 80 for lipolytic and esterastic activities, respectively.
+e following components were used for protease medium:
5 g/L of tryptone; 2.5 g/L of yeast extract; 1.0 g/L of glucose;
2.5 g/L of NaCl; 15 g/L of agar; and the pH adjusted to 7.0.
All components were sterilized at 121°C for 15 minutes, and
100mL skimmed milk was added for completing one liter.

+e experiment was performed in triplicate, and the
isolates were incubated for 48 h at 28°C. Congo red dye was
used as a revealer (15 minutes) followed by a washing step
with 5M NaCl for the cellulase activity visualization. Iodine
tincture was used for amylase and pectinases tests. +e
enzymatic production of protease, lipase, and esterase ac-
tivities was visualized as a bright halo around the colonies
[72].

2.3. Natural Products Extraction. +e isolate GLB 2 was
selected for the next experiments due to its broad-spectrum,
high bioactivity rates in antimicrobial screening, and ca-
pacity to biosynthesize multiple enzymes. +e natural
products extract (NPE) of the isolate GLB 2 was obtained
through the inoculation of 10 μL of a preculture in round-
bottom tubes (12mL capacity) containing 3mL of ISP2 and
incubated at 220 rpm/28°C for three days. Subsequently, the
culture was inoculated in 100mL of ISP2 in a 250mL flask
and maintained under the same conditions for seven days.
+e culture was then centrifuged at 4,500 rpm for 10min and
extracted by solid-phase using polypropylene mesh packages
containing 1.5 g of Amberlite® XAD16 resin (Sigma-
Aldrich), which were added to the fermented broths and
overnight incubated on a rotary shaker under the same
conditions described. +e resin bags were then removed and
packed in glass tubes containing 20mL ofMeOH : EtOAc (1 :
1). +e extracts were dried and concentrated by Vacufuge
plus (Eppendorf), resuspended at a 50mg/mL concentration
in 100% dimethyl sulfoxide (DMSO) and maintained at
− 80°C [73].

2.4. Antagonism Index in Phytopathogens. +e isolate GLB 2
NPE antagonism index (AI) was determined by the inoc-
ulation of 500 μg of its NPE in a sterile disk placed on top of
the plate. A plug of phytopathogenic fungus was inoculated
in the center. +e assay positive control consisted of cul-
turing each phytopathogen, as described above, in the
presence of 500 μg of benomyl, whereas for the negative
control, each phytopathogen was cultured to indicate the
expected fungi growth. All measurements were performed in
triplicate (Figure 1).

2.5. Minimum Inhibitory Concentration. +e minimum in-
hibitory concentration (MIC) of the NPE was performed in
triplicate, according to recommendations of the Clinical and
Laboratory Standards Institute (CLSI) [74] against pathogenic
bacteria Staphylococcus aureus ATCC 25923, Staphylococcus
epidermidis ATCC 35984, Enterococcus faecalis ATCC 29212,
Enterococcus faecium ATCC 700221, Acinetobacter baumannii
ATCC 19606, Escherichia coli ATCC 25922, Klebsiella
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pneumoniae ATCC 700603, and Pseudomonas aeruginosa
ATCC 27853. An overnight culture of each pathogen was di-
luted until reaching a 5×105CFU.mL− 1 final concentration in
Müeller–Hinton cation adjusted (MHCA) broth with several
concentrations of COPS NPE (from 100 to 1.5μg/mL at 1%
DMSO) and incubated for 24h, at 37°C. As a positive control,
ciprofloxacin was used at the same concentration gradient, and
bacterial suspensions in MHCA broth and 1% DMSO were
used as negative controls. +e bioactivity was analyzed by
measuring each well’s optical density 24 hours after adminis-
tration of NPE in a microtiter plate reader.

2.6. In Vitro Activity Assay against Leishmania spp.
Cultures of promastigote forms of Leishmania infantum
strain MHOM/BR/1972/LD and L. major, maintained at
− 80° C in a freezing solution (DMSO/fetal bovine serum—1 :
10), were thawed and transferred to 9mL of Schneider’s
medium (Sigma-Aldrich, USA) supplemented with 10%
inactivated fetal bovine serum (Vitrocell Embriolife, BRA),
10% human urine from male volunteers aged between 25
and 35 years, and 1% of penicillin and streptomycin. +e
cultures were then centrifuged for 5min at 5000 rpm, and
the pellet was resuspended in 1ml of the same medium,
which was transferred to a 50mL capacity cell culture bottle

containing 9mL of fresh medium and incubated at 26°C in
5% CO2.

+e toxicity assay consisted of the inoculation of pro-
mastigotes in the stationary phase (107 cells/mL) in 96 well
plates containing different concentrations of NPE (200, 100,
50, 25, 10, and 1 μg/mL). +ey were tested in biological
triplicates and experimental duplicates. +e OD550 was
measured by a spectrophotometer (+ermo Scientific
Multiskan GO spectrophotometer) 24 hours after the ad-
ministration of NPE. Amphotericin B (Sigma-Aldrich, USA)
at 100 μM was used as a positive control. +e cell viability
percentage was calculated from the absorbance of the
negative control, which represents 100% of cell viability (%
of living cells� test OD550 ×100/negative control OD550),
and IC50 was measured by nonlinear regressions of the
values found for each concentration in, at least, three in-
dependent experiments.

2.7. Statistical Analysis. +e results were analyzed by
GraphPad Prism 8.0.1 software (San Diego, California,
USA), and the Shapiro–Wilk test was applied to all data
obtained. Subsequently, one-way ANOVA (one-way anal-
ysis of variance), followed by Dunnett’s multiple compari-
sons test were applied using a statistical significance at
p< 0.05 (95%).

Table 1: Pathogenic strains used in this study.

Public health pathogens Phytopathogens
Staphylococcus aureus ATCC 25923 Sclerotinia sclerotiorum
Staphylococcus aureus ATCC 29213 Moniliophthora perniciosa
Staphylococcus epidermidis ATCC 35984 Fusarium solani
Enterococcus faecium ATCC 700221 Fusarium oxysporum ATCC 2163
Enterococcus faecalis ATCC 29212 Sphaceloma sp.
Micrococcus luteus ATCC 9341 Ceratocystis paradoxa
Acinetobacter baumannii ATCC 19606 Alternaria alternata
Escherichia coli ATCC 25922 Fusarium proliferatum
Klebsiella pneumoniae ATCC 700603 Colletotrichum sp.
Pseudomonas aeruginosa ATCC 27853 Fusarium verticillioides
Candida albicans ATCC 10231 Fusarium oxysporum—bean

Fusarium oxysporum—cotton
Phytophthora sojae

Rhizopus microsporus

A

B
X1

X2
X3

X4

(a)

X1
(X2 + X3 + X4)AI(%) = 

3
∗ 100

(b)

Figure 1: Schematic representation of the quantitative assay for the AI determination: (a) paper disk containing NPE of Burkholderia
cepacia COPS; (b) phytopathogenic fungus mycelium. +e inhibition index was calculated by the formula using the means of the mycelial
growth measurements in centimeters.
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+e statistical significance in Leishmania assays was
calculated by Tukey’s multiple comparison test after one-
way ANOVA analysis.

2.8. Genomic DNA Isolation. Isolate GLB 2 was cultivated for
three days/28°C in 20mL of ISP2 broth (malt extract, 10 g/L;
glucose, 4 g/L; yeast extract, 4 g/L; pH 7,3), and cells were
harvested by centrifugation at 8000 rpm for 10 minutes. Ge-
nomic DNA was then extracted using DNeasy Kit (Qiagen)
with a lysis process consisting of four cycles of incubation of cell
pellets at 65°C for 15 minutes in 180μL of ATL buffer followed

by freezing at − 80°C for 15 minutes. DNAwas eluted in 100μL
of H2O, and its quality was analyzed on 0.7% agarose gel
stained with hydra green and quantified using a NanoDrop.

2.9. Genome Sequencing, Assembly, and Functional Annotations.
Pair-ended sequences were obtained by Illumina MiSeq
(Illumina, San Diego, USA) platform using a 2x250 bp li-
brary prepared using Nextera XT DNA kit with v3 600
cycles. Illumina paired end reads were first preprocessed for
quality analysis using FastQC—Unipro UGENE v. 34 [75]
and trimmed using Trimmomatic—Galaxy v. 0.38.0 [76] for
removing quality bases lower than 20 and adapters.

Table 2: Results of the initial screening against pathogens.

Pv110 Pv168 GLB10″ GLB10′ Roxo20 Pv150 Pv48 Roxo19 Roxo16 Pv55 WFRh72 Pv46 Unk3 GLB2
Human pathogens
Escherichia coliATCC
25922 − − − − − − − − − + − − − +

Staphylococcus
aureusATCC29213 − − − − + − − + + − − − + +

Candida albicans
ATCC 10231 − − − − − − − − − − − − − +

Phytopathogenic fungi
Moniliophthora
perniciosa − − − − − − − − − − − − + +

Sclerotinia sclerotiorum − − − − − − − − − + − − + +
Fusarium solani − − − − − − − − − + − − + +
Fusarium verticillioides − − − − − − − − − + − − + +
Fusarium proliferatum − − − − − − − − − + − − + +
Fusarium oxysporum
(bean) − − − − − − − − − + − − + +

Fusarium oxysporum
(cotton) − − − − − − − − − + − − + +

Fusarium oxysporum
(ATCC 2163) − − − − − − − − − + − − + +

Phytophthora sojae − − − − − − − − − + − − − +
Ceratocystis paradoxa − − − − − − − − − + − − + +
Colletotrichum sp. − − − − − − − − − + + − + +
Rhizopus microsporus − − − − − − − − − + + − + +
Alternaria alternata − − − − − − − − − + − − + +
Sphaceloma sp.
(CNPUV 102) + − − − − − − − − + − − + +

Table 3: Enzymatic activity of bacteria isolated from Polygala paniculata.

Amylase Cellulase Protease Polygalacturonase Pectate lyase Lipase Esterase
PV 46 + − + + + + −

PV 48 − − − − + − −

PV 55 − − + − − + +
PV 110 − − − − + − −

PV 150 + + + + + − −

PV 168 − − + − − − −

WF.RH.72 − − − − − − −

UNK 3 − − + − − − −

GLB 2 − − + − − + +
GLB 10′ − − − − + − −

GLB 10″ − − + − + + −

Roxo 16 − − + − − − −

Roxo 19 − − + − − − −

Roxo 20 − − + − − − −
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Burkholderia sp. genome was assembled using SPAdes Ge-
nome Assembler—Galaxy v. 3.12.0 [77] applying kmers 21,
33, and 55. Quality assessment of assemblies was evaluated
using the software QUAST Genome assembly Qual-
ity—Galaxy v. 5.0.2 [78] followed by annotation using
Prokka—Prokaryotic genome annotation v. 1.14.1—Galaxy v.
1.14.5 [79] and Rast v. 2.0 [80] (https://rast.nmpdr.org/rast.
cgi). Finally, GLB 2 genomic contigs were mapped against the
reference genome of B. cepacia ATCC 25416 using CON-
TIGuator v. 2.7.4 [81].

2.10. Phylogenetic and Multilocus Sequence Analysis.
Isolate GLB 2 16S ribosomal RNA gene was identified by
RNAmmer 1.2 server (http://www.cbs.dtu.dk/services/) [82]
and identified based on 16s rRNA BLAST search.

+e complete 16S rRNA and housekeeping gene sequences
atpD (ATP synthase β chain—1,395bp), gltB (glutamate syn-
thase large subunit—4,704bp), gyrB (DNAgyrase B—2,475bp),
recA (recombinase A—1,071bp), lepA (GTP binding pro-
tein—1,794bp), phaC (acetoacetyl-CoA reductase—741bp),
and trpB (tryptophan synthase subunit B—1,194bp) from
reference Bcc members were retrieved from PubMLSTdatabase
(http://www.pubMLST.org/bcc/) and aligned with the endo-
phytic B. cepacia nucleotide sequences by ClustalW and con-
catenated using MEGA X software [83].

+e phylogenetic trees of multiple alignments of 16S
rRNA and concatenated housekeeping gene sequences
were generated by MEGA X. +e neighbor-joining
method [84, 85] using Jukes-Cantor as a substitution
model, respectively, as well 1000 bootstrap replications as
branch support for the construction of the trees.
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Burkholderia COPS

NZ CP009795.1 Burkholderia dolosa AU0158
NZ CP009832.1 Burkholderia multivorans ATCC-BAA-247

NZ CP013378.1 Burkholderia pseudomultivorans 
SUB-INT23-BP2

Figure 2: Consensus tree obtained from a neighbor-joining phylogenetic analysis using the Jukes-Cantor method (bootstrap with 1000
replicates) based on the concatenated full length of seven housekeeping and 16S rDNA gene of B. cepaciaCOPS strain compared to reference
sequences of Bcc members.

Table 4: Genomic comparisons between Burkholderia cepacia COPS and B. cepacia strains based on genome comparisons and multilocus
sequence analysis.

Genome comparisons Multilocus sequence analysis
Strain GC (%) ANIm (%) ANIb (%) dDDH (%) Tetra Locus Identity (%) Allele

Burkholderia cepacia RB-39 65.91 93.68 91.82 51.00 0.99738 atpD 100 atpD 235
Burkholderia cepacia DDS 7H-2 67.05 92.01 90.20 43.30 0.99559 gltB 100 gltB 707
Burkholderia cepacia DWS 16B-4 67.07 92.01 90.24 43.30 0.99561 gyrB 99.7797 gyrB 1041
Burkholderia cepacia LMG 16656 66.88 92.07 90.08 43.60 0.99553 lepA 99.4962 lepA 3
Burkholderia cepacia MSMB1302 66.81 96.22 95.19 67.00 0.99924 phaC 99.4805 phaC 279
Burkholderia cepacia LK13 66.47 98.72 98.04 87.80 0.99948 recA 100 recA 1
Burkholderia cepacia NBRC 14074 66.67 97.56 96.86 77.20 0.99929 trpB 100 trpB 21
Burkholderia cepacia NCTC10743 66.60 97.56 96.86 77.10 0.99932
Burkholderia cepacia ATCC 25416 66.58 97.56 96.87 77.10 0.99935
Burkholderia cepacia GG4 66.68 91.30 88.62 36.80 0.99608
Burkholderia cepacia JBK9 66.82 92.35 90.59 45.00 0.99686
Burkholderia cepacia MSMB591WGS 66.43 98.71 98.13 87.40 0.99932
Burkholderia cepacia MSMB1224WGS 66.86 97.94 97.23 80.70 0.99892
Burkholderia cepacia LO6 66.99 89.93 86.75 36.20 0.97175
Burkholderia sp. LK4 66.46 98.78 98.05 87.80 0.99950
Burkholderia reimsis BE51 66.37 98.72 98.05 86.50 0.99938
Burkholderia lata LK27 66.76 98.53 96.91 87.90 0.99926
Bold values based on ANI, dDDH, and TETRA (threshold of ≥ 96%, ≥ 70%, and TETRA > 0.999%, respectively) represent that strains belong to the same
genomic species, whereas in multilocus sequence analysis, bold values represent new alleles of housekeeping genes within Burkholderia spp.

6 International Journal of Microbiology

https://rast.nmpdr.org/rast.cgi
https://rast.nmpdr.org/rast.cgi
http://www.cbs.dtu.dk/services/
http://www.pubMLST.org/bcc/


2.11. Comparative Genomic Analysis. Average nucleotide
identity (ANI) [86–88], calculation of tetra nucleotide fre-
quencies, and correlation coefficients [89] values were es-
timated based on BLAST alignments using JSpeciesWS
(http://jspecies.ribohost.com/jspeciesws/) [90, 91], whereas
GGDC 2.1 (http://ggdc.dsmz.de/distcalc2.php) using
BLAST+ alignment and recommended formula (2) were
used to calculate the genome-to-genome distance [92, 93].

Additional in silico analyses of GLB 2draft-genome were
performed using PathogenFinder 1.1 [94] and ResFinder 4.1
[95, 96] to estimate the number of pathogenicity determi-
nants and antibiotic resistance genes (https://cge.cbs.dtu.dk/
services).

3. Results

3.1. Antimicrobial and Enzymatic Potential Screening.
Fourteen bacterial isolates were randomly selected (endo-
phytes and from rhizosphere) and tested by overlay assay
against S. aureus ATCC 29213, E. coli ATCC 11775, and
C. albicans ATCC 10231 and phytopathogenic fungi as a
primary selection on solid media. +e results of the anti-
microbial and enzymatic screening assay data are summa-
rized in Tables 2 and 3. We observed that protease was the
most abundant enzymatic activity detected, followed by
pectinase at pH 8.0 (pectate lyase). Based on such results, we
selected the isolate GLB2, which showed the antagonism
activity against all tested pathogens and presented the en-
zymatic activity. We coined the isolate Burkholderia cepacia
COPS strain in this study.

3.2. Burkholderia cepacia COPS Genome. Root endophyte
GLB2 isolate, which revealed a broad-spectrum and potent
activity against all pathogens tested, was identified as Bur-
kholderia cepacia based on 16s rRNA BLAST (GenBank
accession number MN939546) search. +e phylogenetic
analysis revealed the isolate belongs to the Burkholderia
sensu stricto group and is closely related to Bcc genomovar.

Genome sequencing of Burkholderia cepacia COPS
strain generated 1,970,487 reads with an average length of
35–251 bp. +e assembled genome estimated in 8.3 Mbp
distributed in 80 contigs with an N50 of 275,353 bp. +e
functional annotation predicted 1885 genes, of which 1,838
are protein-coding genes (CDSs), 21 tRNAs, 26 misc RNAs,
and 66.87% of a GC content. +e draft-genome sequence
was deposited in GenBank under accession number
WIXR00000000.

Phylogenetic inferences (neighbor-joining and maxi-
mum likelihood) of COPS strain and Bcc reference strains of
individual 16S rRNA and housekeeping genes atpD and
phaC showed low-resolution bootstrap values. In addition,
COPS strain is clustered separately from B. cepacia UCB 717
forming a single branch, whereas gltB, gyrB, lepA, recA, and
trpB were strongly supported, as well lineages clearly
grouped (Supplementary Material 1–8).

+e multilocus sequence typing of Burkholderia cepacia
COPS using theMLST-2.0 server revealed this strain belongs
to the novel ST 1870 (ID 3851), with the following alleles

numbers: atpD (235), gltB (707), trpB (21), recA (1), gyrB
(1205), lepA (789), and phaC (607). Phylogenies regarding
concatenated sequences (14833 bp) of the full length of seven
housekeeping genes showed a significant branch support
and strong association with B. cepacia UCB717 (Figure 2).

Pairwise digital DNA-DNA hybridization (dDDH) of
COPS strain compared to 13 sequences of other Bur-
kholderia cepacia strains revealed identity levels ranging
from 87.90% to 80.70%, whereas ANIm, ANIb, and tetra-
nucleotide frequency signature (TETRA) values of Bur-
kholderia sp. LK4, B. reimsis BE51, and B. lata LK27 were
interestingly slightly higher when compared to B. cepacia
strains. Table 4 summarizes the genome level comparisons of
COPS to other B. cepacia strains.

Genome analysis performed using ResFinder 4.1
revealed the presence of ORFs corresponding to aph(3′)-
IIa (99.75% identity) and blaTEM-116 (100% identity)
genes, which confer resistance to aminoglycosides and
beta-lactams, respectively. Nevertheless, B. cepacia COPS
was estimated in 0.829 as a human pathogen, and its
genome matched 53 pathogenic and five nonpathogenic
families by PathogenFinder 1.1.

3.3. Antagonistic Effects of Burkholderia cepacia COPS Crude
Extract. Regarding the bioactivity against bacterial and
yeast pathogens in overlay assay, B. cepacia COPS po-
tently inhibited S. aureus ATCC 29213, E. faecalis ATCC
29212, E. coli ATCC 25922, M. luteus ATCC 9341, and
C. albicans ATCC 10231. However, the NPE obtained
from the COPS cultivation in ISP2 revealed inhibition
against Gram-positive bacteria as well as A. baumannii
ATCC 19606 and E. coli ATCC 25922 at 512 μg/mL. In
addition, the NPE inhibited all phytopathogenic fungi in
primary screening by a two-by-two streaking test. +e
inhibition index calculation was based on the inoculation
of 500 μg/disk of B. cepacia COPS NPE. +e phyto-
pathogenic fungi M. perniciosa, S. sclerotirium, and
C. paradoxa showed the highest inhibition percentages
(89.32%, 85.53%, and 82.69%, respectively). +e antag-
onism activity of NPE exceeded the positive control
(74.17%) of M. perniciosa, whereas R. microsporus and
F. oxysporum ATCC 2163 were less inhibited (6.59% and
7.17%, respectively) (Figure 3 and Table 5).

3.4.Activity against Leishmania spp. We tested the activity of
B. cepacia COPS NPE in vitro against Leishmania infantum
and Leishmania major. A 24-hour treatment with NPE
concentrations ranging from 200 to 1 μg/mL potentially
inhibited L. infantum promastigotes with cell viability
ranging from 27% to 78.25%, respectively, with IC50 of
86.6 μg/mL. Moreover, the NPE in the highest concentration
tested was more effective than amphotericin B at 100 μM
(28.6% cell viability).

On the other hand, the effect of COPS NPE against
Leishmania major was not so potent compared to
L. infantum. +e results show 57.30% cell viability in a
200 μg/mL concentration and an IC50 of 94.55 μg/mL.
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Figure 4 summarizes the enzymatic and antileishmanial
effects of B. cepacia COPS.

4. Discussion

Burkholderia spp. are nonfermenting bacteria spread
worldwide and highly able to adapt to various ecological
niches [43, 46, 97–99]. Although Bcc is considered potentially
life-threatening as an opportunistic pathogen in hospital en-
vironments, especially in patients with cystic fibrosis,

Burkholderia spp. are versatile for biotechnological applications,
and their potential has been exploited for bioremediation, plants
growth promotion, biological control, and broad-spectrum
agents in several members of this group [41, 46, 47, 100].

Burkholderia genus (sensu lato) comprises more than
100 species that possess the ability to adapt to various
ecological niches [99, 101]. Members of this complex group
exhibit genomes ranging from 7 to 9Mbp, resulting in
several taxonomic rearrangements [46, 99], rapid mutation,
and adaptation [102]. Bcc species exhibit high genetic

(a)

(b) (c) (d) (e) (f)

Figure 3: Antimicrobial activity of NPE (a) produced by B. cepacia COPS. Columns (b) and (c) correspond to different crude extracts’
antibacterial activity compared to overlay assay (top to bottom: Bacillus cereus, Escherichia coli, and Enterococcus faecalis). Lanes (d) COPS
NPE, (e) benomyl, as positive control, and (f) negative control represent the antifungal effect. From top to bottom: Moniliophthora
perniciosa, Ceratocystis paradoxa, Sclerotinia sclerotiorum, Alternaria alternata, and Fusarium verticillioides.
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Table 5: Antagonistic activity of B. cepacia strain COPS NPE toward phytopathogenic fungi and pathogenic bacteria.

Phytopathogenic fungi Public health pathogens

NPE treatment Benomyl GLB2 treatment
AI (%) AI (%) MIC (μg/mL) IC50 (μg/mL)

Moniliophthora perniciosa 89.32 74.17 Staphylococcus aureus ATCC 25923 128 58.36
Sclerotinia sclerotiorum 85.53 86.26 Staphylococcus epidermidis ATCC 35984 32 22.49
Fusarium solani 37.97 85.54 Enterococcus faecium ATCC 700221 32 24.11
Fusarium verticillioides 27.10 92.79 Enterococcus faecalis ATCC 29212 64 26.34
Fusarium proliferatum 26.27 92.17 Acinetobacter baumannii ATCC 19606 512 298.2
Fusarium oxysporum (bean) 15.95 90.58 Escherichia coli ATCC 25922 512 103.4
Fusarium oxysporum (cotton) 13.21 89.79 Klebsiella pneumoniae ATCC 700603 >512∗ N.D.
Fusarium oxysporum (ATCC 2163) 7.17 94.42 Pseudomonas aeruginosa ATCC 14502 >512∗∗ N.D.
Phytophthora sojae 61.15 100.00
Ceratocystis paradoxa 82.69 100.00
Colletotrichum sp. 42.27 100.00
Rhizopus microsporus 6.59 26.53
Alternaria alternata 22.53 87.48
Sphaceloma sp. (CNPUV 102) 61.45 27.52
∗Partial inhibition at 512 μg/mL (14.09%); ∗∗partial inhibition at 512 μg/mL (25.36%).
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Figure 4: Continued.
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similarity and is phenotypically indistinguishable [102–104],
leading to often misidentifications interfering the effective
treatment and epidemiological studies [52, 105].

Our analyses concerning COPS strain for pathogenicity
determinants using PathogenFinder 1.1 revealed a predic-
tion of pathogenic potential of 0.829, whereas the reference
B. cepacia ATCC 25416 was 0.774. Interestingly, Z-scores of
TETRA correlation were slightly higher (Burkholderia sp.
LK4, B. reimsis BE51, and B. lata LK27) when compared to
B. cepacia strains.

+e analysis of sequence variations of recA and hisA
genes offers further discriminatory support at species-level
identification [53, 104, 106]. However, multilocus sequence
typing offers more sensitivity to identify species within Bcc
[57, 107–109]. Our results showed a significant branch
support (100%) and a strong association with B. cepacia
UCB717 and revealed novel alleles of gyrB, lepA, and phaC,
which led us to describe the novel ST 1870. As mentioned,
Burkholderia spp. may be found in a wide range of niches,
and genetic variations might occur in response to niche
adaptation [41, 109].

Regarding the individual alignments of atpD and
phaC, our results showed low-resolution bootstrap
values, which corroborate inconsistencies found in
MLST, ANI, and DNA hybridization of the soil isolate
Burkholderia catarinensis sp. nov., formerly reported as
B. cepacia [110]. Analysis by matrix-assisted laser de-
sorption/ionization time-of-flight mass spectrometry
(MALDI-TOF MS) enabled the proper identification of
novel species of Burkholderiales. Interestingly,
B. catarinensis exhibits physiological characteristics that
differ from most other Bcc species [52].

In summary, the present study confirms that COPS
strain is closely related to B. cepacia based on the whole-
genome ANI, individual housekeeping gene sequence

analysis, and MLST. Moreover, we present for the first time
the identification of a B. cepacia symbiotically/endophyti-
cally associated with Polygala paniculata suggesting that
Polygala genus plays a role in harboring microorganisms for
biotechnological applications.

+e detection of in vitro production of active compounds
may be tricky. Usually, quorum sensing (QS) also controls
the production of multiple antimicrobial substances.+e cell
density can promote a signaling system that transcribes
certain genes for their interaction with their hosts and in-
creases resistance to stresses [43, 111]. However, the pres-
ence of nutrients in the fermentation medium might affect
the biosynthesis of QS signaling molecules, such as N-acyl
homoserine lactones. Keum et al. [112] demonstrated that
glucose (present in ISP2 at 4 g/L in its composition) in-
creases the biomass, but suppresses the production of
pyrrolnitrin, which is effective against fungi, yeasts, and
Gram-positive bacteria [113]. Nevertheless, Figure 4 shows
that the COPS NPE produced by the cultivation in ISP2 still
exhibited potent inhibition against phytopathogenic fungi
(lanes D, E, and F). Interestingly, regarding cell proliferation,
the cultivation of B. cepaciaCOPS in ISP2 showed higher cell
density comparing to other media, such as Luria–Bertani
medium [114], PDB [67], and 2S4G [115]. However, in disk
diffusion assay, the NPEs obtained by cultivation in different
media presented a nonsignificant activity (lane B). In con-
trast, the overlay assay using ISP2 showed a moderate ac-
tivity against B. cereus and higher inhibition zones against
E. coli and E. faecalis (lane C). +us, these data corroborate
related studies [112, 116, 117] concerning multiple sec-
ondary metabolites’ production.

In agrobiology, the broad-spectrum activity of micro-
organisms that inhibit plant pathogens is critically important
for biological control because the ability to antagonize
phytopathogens can indirectly promote the host plant
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Figure 4: Evaluation of enzymatic production of Burkholderia cepacia COPS in solid media: (a) protease; (b) esterase; (c) lipase. Activity of
B. cepaciaCOPSNPE at different concentrations against promastigotes of L. infantum (d) and L. major (e) after 24 hours of exposure. Values
represent two independent experiments performed in triplicate. ∗∗∗Indicates statistical significance compared to the negative control, with
values of p< 0.001.
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growth [99, 118]. In this context, Orlandelli et al. [118]
evaluated antagonism and competitive interactions of en-
dophytic fungi isolated from Piper hispidum against Alter-
naria alternata, Colletotrichum sp., Phyllosticta citricarpa,
and Moniliophthora perniciosa. Although fungus Lasiodi-
plodia theobromae showed activity against all tested phy-
topathogens in a dual culture assay, it exhibited antagonism
indexes of 60.09% against M. perniciosa, 64.79% in
A. alternata, and 54.16% in Colletotrichum sp. In our study,
the NPE of Burkholderia cepacia COPS showed better in-
hibition toward M. perniciosa, thus exceeding the positive
control (74.17%). On the other hand, the COPS crude extract
showed mild effects toward A. alternata (22.53%) and
Colletotrichum sp. (42.27%). +e phytopathogenic fungus
Moniliophthora perniciosa, which causes the witches’ broom
disease in cacao crops, is responsible for 90% losses in the
cacao annual production [119, 120]. +erefore, it is of in-
terest to have a microorganism, such as B. cepacia COPS,
that could help in the cacao crops infection control.

Interestingly, de Almeida Lopes et al. [121] isolated three
endophytic strains of Bcc from soybean plants. +e culti-
vation in nutrient broth produced bioactive lipopeptides,
extracted by different methods (methanol, ethyl acetate, and
ammonium sulfate precipitation), and qualitatively tested
regarding their capacity to inhibit fungal (S. sclerotiorum,
P. sojae, and R. solani) and bacterial (X. axonopodis pv.
glycines and P. savastanoi pv. glycinea) plant pathogens. +e
inhibition rates against the phytopathogenic fungi exceeded
70%; whereas, in our study, 200 μg of the COPS NPE
promoted a potent inhibition of Sclerotinia sclerotiorum and
showed a moderate activity against P. sojae.

Our analysis revealed that COPS NPE can potentially
inhibit C. paradoxa but exhibits moderate and slight ac-
tivities against Colletotrichum sp. and Fusarium verti-
cillioides, respectively. Such phytopathogenic fungi and
others are responsible for high losses in the production of
several crops worldwide [122, 123]. C. paradoxa causes the
black rot postharvest disease in pineapple [124] and also
infects sugarcane [125, 126], palm trees, cacao plants, and
several other crops [127]. F. verticillioides is a producer of
fumonisin, a carcinogenic mycotoxin [128], and other
species have been described as emergent and opportunistic
pathogens in humans [129]. Fávaro et al. [125] monitored
E. nigrum endophytically inoculated in sugarcane plants,
and its extract significantly reduced the diameter of Fusa-
rium verticillioides, Colletotrichum falcatum, Ceratocystis
paradoxa, and Xanthomonas albilineans colonies at con-
centrations ranging from 0.1 to 2.0mg/mL.

As discussed above, the COPS strain was capable of
producing lipase in solid medium, and its NPE potentially
inhibited L. infantum and L. major. +ese observations
corroborate the work of Alves et al. [130] that investigated
the antileishmanial activity of crude extracts of lipase-pro-
ducing endophytic fungi toward Leishmania amazonensis.
+e antileishmanial activity of lipases of Vermisporium sp.
(78.88%), Emericella nidulans (39.65%), Dichotomophtora
portulacae (63.17%), and Dichotomophtora boerhaaviae
(98.13%) was detected at 5mg/mL in amastigote forms,
suggesting an enhancement of antileishmanial activity by

lipases due to their thermal stability and resistance to several
organic solvents, including alcohols [131]. +erefore, a de-
tailed analysis of compounds produced by B. cepacia COPS
is fundamental for a complete understanding of its potent
antileishmanial effect.

Considering that the leishmaniasis treatment with
pentavalent antimonials is known to be ineffective and
unsafe and therapies based on pentamidine and ampho-
tericin B are considered toxic and exhibit recurrence rates, it
is clear that new treatment alternatives are necessary
[132–136]. Although widely described as a producer of
antibacterial and antifungal compounds [41, 42, 137–139],
we emphasize that the Burkholderia species’ antileishmanial
activity was unknown so far. As we demonstrated in this
study, Burkholderiales may offer promising candidates to
treat neglected diseases of which resistance and toxicity of
current treatments represent a global public health concern.

5. Conclusions

+is research’s novelty lies in the isolation of rhizospheric
and endophytic bacteria associated with Polygala paniculata
and isolation and biological activity determination of the
root endophyte Burkholderia cepacia COPS strain. Our
results demonstrated that Polygala paniculata is a promising
source of microorganisms for the fight against Leishmania
spp., bacteria of clinical importance, and phytopathogens.
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